On Almost-Regular Edge Colourings of Hypergraphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Almost-Regular Edge Colourings of Hypergraphs

We prove that if H = (V (H), E(H)) is a hypergraph, γ is an edge colouring of H, and S ⊆ V (H) such that any permutation of S is an automorphism of H, then there exists a permutation π of E(H) such that |π(E)| = |E| and π(E)\S = E \S for each E ∈ E(H), and such that the edge colouring γ′ of H given by γ′(E) = γ(π−1(E)) for each E ∈ E(H) is almost regular on S. The proof is short and elementary....

متن کامل

List Colourings of Regular Hypergraphs

We show that the list chromatic number of a simple d-regular r-uniform hypergraph is at least (1/2r log(2r 2) + o(1)) log d if d is large.

متن کامل

Globally bounded local edge colourings of hypergraphs

We consider edge colourings of K n – the complete r-uniform hypergraph on n vertices. Our main question is: how ‘colourful’ can such a colouring be if we restrict the number of colours locally? The local restriction is formulated as follows: for a fixed hypergraph H and an integer k we call a colouring (H, k)-local, if every copy of H in the complete hypergraph K n picks up at most k different ...

متن کامل

Vertex-distinguishing proper edge colourings of some regular graphs

The vertex-distinguishing index χs(G) of a graph G is the minimum number of colours required to properly colour the edges of G in such a way that any two vertices are incident with different sets of colours. We consider this parameter for some regular graphs. Moreover, we prove that for any graph, the value of this invariant is not changed if the colouring above is, in addition, required to be ...

متن کامل

Neighbour-Distinguishing Edge Colourings of Random Regular Graphs

A proper edge colouring of a graph is neighbour-distinguishing if for all pairs of adjacent vertices v, w the set of colours appearing on the edges incident with v is not equal to the set of colours appearing on the edges incident with w. Let ndi(G) be the least number of colours required for a proper neighbour-distinguishing edge colouring of G. We prove that for d ≥ 4, a random d-regular grap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2016

ISSN: 1077-8926

DOI: 10.37236/5826